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Abstract. We calculate connected correlators in Gaussian orthogonal, unitary and symplectic
random matrix ensembles by the replica method in the 1/N -expansion. We obtain averaged one-
point Green’s functions up to the next-to-leading order O(1/N), wide two-level correlators up
to the first non-trivial order O(1/N2) and wide three-level correlators up to the first non-trivial
order O(1/N4) by carefully treating fluctuations in saddle-point evaluation.

1. Introduction

Recently, the universality of the wide-distance two-level connected correlator in random
matrix theories was shown by Ambjørnet al [1]. Brézin and Zee [2] regarded this
universality as important from the viewpoint of physics in disordered systems. Since
the correlator does not depend on the probability distribution of a matrix ensemble, we
may use the correlator calculated in the corresponding simple Gaussian ensemble with
the same symmetry for the non-trivial disordered system in concern. Compared with the
short-distance correlator which is already well known as a universal quantity [3], the wide
correlators are able to be calculated explicitly in extensive types of ensembles in various
ways [4, 5]. Actually, one observes the strongly universal properties which random matrix
theories have themselves in the wide connected correlators. Their universality classification
is also done in [6]. These mathematical studies of random matrix theories themselves enable
us to recognize the real universal nature of level statistics.

In this paper, we examine the replica method to calculate the wide connected two-level
correlator in Gaussian orthogonal (GOE), unitary (GUE) and symplectic (GSE) ensembles.
These simple ensembles GOE, GUE and GSE can describe a time reversal system without
spin, a general system and a time reversal system with spin, respectively [3]. The replica
method is well known as a convenient scheme to calculate the two-body Green’s function in
some models of the Anderson localization [7]. Even though this method cannot calculate the
short-distance correlator [8] well, here we show that this method is useful for calculating
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the wide two-level correlator in the 1/N expansion. This method is much simpler than
the supersymmetry method which enables us to calculate both the wide- and short-distance
correlators [8, 9]. Here, we remark the reason why the replica method is not good for the
short-distance correlator. We are going to calculate the explicit form of the two- and three-
level correlators in GOE, GUE and GSE, which are identical to those calculated by solving
functional equations [4, 11] or by the diagrammatic method [12]. Here we study a matrix
theory defined by the following probability distribution

P(H) = 1

ZH
exp

(
−N

2
TrH 2

)
ZH ≡

∫
DH exp

(
−N

2
TrH 2

)
(1)

whereH is anN × N matrix. The explicit form of the measure DH depends on a type
of an ensemble ofH . Our interest is focused on computing averaged Green’s functions by
the replica method. We show their calculation method explicitly for GOE in section 2, for
GUE in section 3 and GSE in section 4. We calculate three-level correlators in section 5.

2. Gaussian orthogonal ensemble

To begin with, we explore the case of the GOE which is defined by the ensemble of real
symmetric matrices obeying the probability distribution (1). The measure DH is explicitly
written as

DH =
N∏
k=1

dHkk
∏
i<j

dHij . (2)

2.1. One-point function

We calculate the averaged one-point function

G(z) ≡
〈

1

N
Tr

1

z −H − iε

〉
≡
∫

DH P(H)
1

N
Tr

1

z −H − iε
. (3)

Note that−iε (ε > 0) means thatG(z) considered here is the advanced Green’s function.
We assume

|z| >
√

2 (4)

in the case of the GOE. The meaning of this assumption will be clarified later. Results for
|z| < √2 will be extracted employing the analytic continuation that is uniquely determined
by −iε.

In order to apply the replica method, we first introduce then-flavour real vectors having
N component(φai )16i6N , where the superscripta, which runs from 1 ton, specifies the
flavour. Let us consider the following integration overφ for constructing a generating
function ofG(z):

0[z,H ] ≡ 1

Zφ

∫
Dφ exp

{
− i

2
tφa(z −H − iε)φa

}
Zφ =

∫
Dφ exp(− 1

2
tφaφa)

(5)

where the superscriptt means transposition and the summation over the repeated indices
are implicitly taken. The measure is defined by

Dφ ≡
n∏
a=1

N∏
i=1

dφai . (6)
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Note that the integration overφ for 0 converges owing to−iε. Hereafter we do not
explicitly write −iε for brevity.

Taking the derivative with respect toz, we have

∂0[z,H ]

∂z
= ∂

∂z
det−n/2(i(z −H))

= −n
2

Tr
1

z −H det−n/2(i(z −H)). (7)

We defineW(z) as the average of0 overH :

W(z) ≡ 〈0[z,H ]〉. (8)

It follows from equation (7) that

G(z) = lim
n→0

(
− 2

nN

)
d

dz
W(z) (9)

which indicates thatW(z) plays the role of a generating function ofG(z). Note that we
need to take the limitn→ 0 in order to eliminate the determinant factor in equation (7).

Let us computeW(z). The average overH in equation (8) is explicitly carried out and
we have

W(z) = 1

Zφ

∫
Dφ exp

(
− i

2
tφazφa − 1

8N
( tφaφb)2

)
. (10)

The quartic interaction can be represented as

exp

(
− 1

8N
( tφaφb)2

)
= 1

ZQ

∫
DQ exp

(
−N

2
QabQba + i

2
tφaφbQab

)
(11)

where(Q)ab is the real symmetricn× n matrix and the normalization factor is defined by

ZQ ≡
∫

DQ exp

(
−N

2
QabQba

)
. (12)

Using representation (11) we obtain

W(z) = 1

ZφZQ

∫
DQDφ exp

(
−N

2
TrQ2− i

2
tφi(z −Q)φi

)
. (13)

Note that indicesa andb are implicitly summed in the above notation: we regardφi as an
n-component vector.

Theφ-integral becomes Gaussian and we find

W(z) = 1

ZQ

∫
DQ exp

{
−N

2
Tr(log i(z −Q)+Q2)

}
. (14)

It can be written as integration over eigenvalues [3]

W(z) = Cn

ZQ

∫ n∏
a=1

dua |1(u)| exp

{
−N

n∑
a=1

g(ua)

}
(15)

whereCn is a constant that depends onn and1(u) is the Van der Monde determinant

1(u) ≡
∏
a<b

(ua − ub). (16)

The functiong appeared in the exponent is defined by

g(x) ≡ 1
2(log i(z − x)+ x2). (17)
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Now we computeW(z) by the 1/N -expansion. Let us first compute it in the leading
order. Since the contribution from the Van der Monde determinant in equation (15) is
neglected in the leading order,ua ’s completely decoupled each other andW(z) is evaluated
by a single-variable integration, i.e.

W(z) ∼ constant

(∫
du exp{−Ng(u)}

)n
(18)

in the leading order. We can evaluate the right-hand side of (18) by the saddle-point method.
The saddle-point equation is

g′(u) = − 1

2(z − u) + u = 0. (19)

We have the two solutionsu±, where

u± = 1
2

(
z ±

√
z2− 2

)
. (20)

We find that the contribution to integral (18) fromu ∼ u− dominates over that fromu ∼ u+.
In fact, a straightforward calculation gives

Reg(u−) < Reg(u+) if z >
√

2. (21)

Therefore we obtain

W(z) ∼ constant e−Nng(u−) (22)

in the leading order. Inserting the above result into equation (9), we obtain the well known
result

G(z) = z −
√
z2− 2 (23)

where the overall constant in equation (22) is chosen such thatG(z) should satisfy the
boundary conditionG(z)→ 1/z asz→∞.

We can compute higher-order corrections by expandingg(ua) in equation (15) around
u = u−

g(ua) = g(u−)+ 1

2N
g′′(u−)y2

a +
∞∑
n=3

N−n/2

n!
g(n)(u−)yna (24)

where we denote

ua − u− = N−1/2ya. (25)

Here we shall calculate up to the first-order correction, which is sufficient for determining
the connected two-point function, as we will see below. To this end, we can neglect the
cubic and the higher terms in equation (24). Then we find

W(z) ∼ Cne−Nng(u−)
∫ ∏

a

dya|1(y)| exp

{
− 1

2

n∑
a=1

g′′(u−)y2
a

}
(26)

up to the next-to-leading order. Note that

g′′(u−) = 1− 2u2
−

=
√
z2− 2

(
z −

√
z2− 2

)
(27)
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which is real and positive under assumption (4). Therefore the integration overya is easily
performed going back to the representation of an integration over real symmetric matrices.
Since there aren(n+ 1)/2 independent variables in a real symmetric matrix, we obtain

Cn

ZQ

∫ ∏
a

dya |1(y)| exp

{
− 1

2

n∑
a=1

g′′(u−)y2
a

}
= 1

ZQ

∫
Dq exp

{
− 1

2
g′′(u−)

∑
a,b

q2
ab

}

=
(

1

g′′(u−)

)n(n+1)/4

. (28)

Thus we conclude

W(z) ∼ e−Nng(u−)
(

1

g′′(u−)

)n(n+1)/4

(29)

up to the next-to-leading order. Using equations (9) and (27), we obtainG(z) including the
first-order correction:

G(z) =
(
z −

√
z2− 2

)(
1+ 1

2N

1

z2− 2

)
+O(1/N2). (30)

This result is identical to that obtained in [11].
Here we comment on the validity of the saddle-point method in equation (28). The

saddle-point evaluation in the 1/N expansion holds only in the region whereg′′(u−) is
O(N0). This approximation becomes incorrect forz = ±√2 + O(1/N) which yields
g′′(u−) = O(1/N).

2.2. Two-point function

Now we turn to the two-point function

G(z1, z2) ≡
〈

1

N
Tr

1

z1−H
1

N
Tr

1

z2−H
〉
. (31)

We shall show how to computewide correlation by the replica method, i.e. we assume
z1− z2 ∼ O(N0) as well as condition (4).

As is the case of the one-point function, we start with the following integral

0[z1, z2, H ] ≡ 1

Zφ1Zφ2

∫
Dφ1 Dφ2 exp

{
− i

2
tφa1(z1−H)φa1 −

i

2
tφ
p

2 (z2−H)φp2
}
. (32)

Here we have introduced the two species of vectors labelled by 1 and 2. The two species
respectively haven- andm-flavour, which means that 16 a 6 n and 16 p 6 m. We
averageZ[z1, z2, H ] overH and defineW(z1, z2), a generating function ofG(z1, z2)

W(z1, z2) ≡ 〈0[z1, z2, H ]〉 . (33)

The two-point function is derived fromW(z1, z2) in the following formula:

G(z1, z2) = lim
n,m→0

( −2

Nm

)(−2

Nn

)
∂2

∂z1∂z2
W(z1, z2). (34)

Our strategy for computingW(z1, z2) is the same as in the case of the one-point function.
Namely, we first perform the integration overH of W(z1, z2). Secondly, we introduce the
auxiliary matrixQ in order to carry out the integration overφ1 and φ2. The integration
over the vector variables bring us the theory described byQ, which can be investigated by
the saddle-point method for largeN .
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The first step is easily performed. We have

W(z1, z2) = 1

Zφ1Zφ2

∫
Dφ1Dφ2 exp

{
− i

2
( tφa1z1φ

a
1 + tφ

p

2 z2φ
p

2 )

− 1

8N
( tφa1φ

b
1 + tφ

p

2φ
q

2)
2

}
. (35)

Next, let us introduce the(n+m)× (n+m) real symmetric matrixQ using the following
expression:

Q =
(
Q11 Q12

Q21 Q22

)
(36)

whereQ11 andQ22 aren × n andm × m real symmetric matrices respectively. SinceQ
is real symmetric,Q12, which is ann×m matrix, satisfiesQ12 = tQ21. In order to write
down a formula corresponding to (13), we employ the following notations:

8i ≡
(
φ1i

φ2i

)
(37)

which is (n+m)-component vectors, and

z =
(
z1In 0

0 z2Im

)
(38)

whereIn is the unitn× n matrix. We can check that the right-hand side of equation (35)
is identical to

1

ZQZφ1Zφ2

∫
DQDφ1 Dφ2 exp

{
−N

2
TrQ2− i

2
t8i(z −Q)8i

}
. (39)

After integrating the vector variables, we acquire

W(z1, z2) = 1

ZQ

∫
DQ exp

{
−N

2
Tr(log i(z −Q)+Q2)

}
. (40)

We analyse the above integral formula by the saddle-point method. The saddle-point
equation is

(z −Q)−1 = 2Q (41)

or equivalently,

2Q11(z1−Q11)− 2Q12Q21 = 1

−2Q11Q12+ 2Q12(z2−Q22) = 0

2Q21(z1−Q11)− 2Q22Q21 = 0

−2Q21Q12+ 2Q22(z2−Q22) = 1.

(42)

After transposing the third equation and subtracting it from the second equation, we find

Q12 = Q21 = 0. (43)

The remaining equations containingQ11 andQ22 are solved by diagonalization. Suppose
thatQ11 andQ22 are respectively diagonalized byO1 andO2. Explicitly,

tO1Q
11O1 = diag(u1, . . . , un)

tO2Q
22O2 = diag(v1, . . . , vm). (44)
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Then the equations to be solved are

ua = 1

2(z1− ua)
vp = 1

2(z2− vp)
(45)

which have the same form as the saddle-point equation that appeared in section 2.1.
Following the argument on the most dominant saddle point that is carried out in the one-point
function, we should choose the saddle point

ua = u− for all a

vp = v− for all p.
(46)

Performing the inverse transformation of equation (44), we obtain the most dominant saddle
point Q̄ in the original basis:

Q̄ =
(
u−In 0

0 v−Im

)
. (47)

Next we consider fluctuations around the saddle pointQ̄. Using the identity

Tr log(A+ δA) = Tr logA+ TrA−1δA− 1
2 TrA−1δAA−1δA+ · · · (48)

and the saddle-point equation (41), we have

Tr

(
log i

(
z − Q̄− δQ√

N

)
+
(
Q̄+ δQ√

N

)2
)

= Tr(log i(z − Q̄)+ Q̄2)+ 1

N
Tr(δQ2− 2δQQ̄δQQ̄)+ · · · . (49)

Inserting the explicit form (47) into the above, we see that the generating function becomes

W(z1, z2) ∼ 1

ZQ
e−Nng(u−)

∫
D(δQ11) exp{− 1

2(1− 2u−2)Tr(δQ11)2}

×e−Nmg(v−)
∫

D(δQ22) exp{− 1
2(1− 2v−2)Tr(δQ22)2}

×
∫

D(δQ12) exp{−(1− 2u−v−)Tr(δQ12)2} (50)

up to the next-to-leading order. Remembering thatg′′(u−) = 1− 2u2
−, we obtain

W(z1, z2) = e−Nng(u−)
(

1

g′′(u−)

)n(n+1)/4

e−Nmg(v−)
(

1

g′′(v−)

)m(m+1)/4( 1

1− 2u−v−

)nm/2
= W(z1)W(z2)

(
1

1− 2u−v−

)nm/2
. (51)

Inserting the above formula into equation (34), we can derive the two-point function.
DifferentiatingW(z1) andW(z2) brings about the disconnected part,G(z1)G(z2), while
the last factor contributes to the connected part. Thus we obtain

G(z1, z2) = G(z1)G(z2)− 2

N2

∂2

∂z1∂z2
log

(
1− 1

2
G(z1)G(z2)

)
(52)

where we have used equation (9) and 2u− = G(z1) + O(1/N). This result, with respect
to the connected part, agrees with that obtained by solving functional equations [4, 11]
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and by a diagrammatic method [12]. Especially the disconnected part up to 1/N2 order in
equation (52) is consistent with [11].

The saddle-point evaluation holds only in the case of 1− 2u−v− = O(N0), as pointed
out in the calculation of the one-point Green’s function. When we compute the following
two-level correlators:〈

1

N
Tr

1

z1−H + iε

1

N
Tr

1

z2−H − iε

〉
(53)

the coefficient of Gaussian fluctuations becomes 1− 2u+v−. The result of the saddle-
point method should be trusted only forz1− z2 = O(N0) indicated by the definition ofu±
equation (20). Therefore, the short-distance two-level correlators should be calculated using
other methods instead of the saddle-point evaluation.

3. Gaussian unitary ensemble

We turn to the case of the GUE, which means the ensemble of Hermitian matrices following
the Gaussian distribution (1). The measure DH is explicitly written as

DH ≡
∏
i6j

d(ReHij )
∏
i<j

d(ImHij ). (54)

We can proceed with a computation as in the case of GOE. We assume

|z| > 2 (55)

in the case of the GUE, which corresponds to assumption (4). We can construct a generating
functionW(z) by employingcomplexvector variables as follows

W(z) ≡
〈

1

Zφ

∫
Dφ exp

{
− i

2
φa
†
(z −H)φa

}〉
(56)

where

Dφ ≡
n∏
a=1

N∏
i=1

d(Reφai ) d(Imφai ). (57)

We can readily show that

G(z) = lim
n→0

(
− 1

nN

)
d

dz
W(z) (58)

in a similar way to the derivation of (9). A difference between equation (9) and equation (58)
arises because the complex vector variables contribute twice compared with the case of real
vector variables. We first take the average overH in (56) and we introduce a Hermitian
auxiliary matrixQab along the line with the case of the GOE. See equations (10)–(13).
Then the integration over the complex vector variables gives

W(z) = 1

ZQ

∫
DQ exp

{
−N

2
Tr(2 log i(z −Q)+Q2)

}
= Cn

ZQ

∫ n∏
a=1

dwa 1(w)
2 exp

{
− N

2

n∑
a=1

(2 log i(z − wa)+ wa2)

}
. (59)

DiagonalizingQ, we obtain the saddle-point equation corresponding to equation (19)

− 1

z − w + w = 0. (60)
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The most dominant saddle point isw−In, in which

w− ≡ 1
2(z −

√
z2− 4). (61)

We expand the exponent of (59) aroundw−In and ignore the cubic and higher terms of the
fluctuation in the same way as we did for GOE. The Gaussian integration of the fluctuation
is easily performed, from which we derive

W(z) ∼ exp

{
−Nn

2
(2 log(z − w−)+ w2

−)
}(

1

1− w2−

)n2/2

(62)

up to the next-to-leading order. Using this result and equation (58), we obtain

G(z) = 1
2

(
z −

√
z2− 4

)
+O(1/N2). (63)

Note that first-order corrections vanish in this case.
The two-point function defined in equation (31) is also calculated following the case of

GOE. Using complex vectors, we define the generating functionW(z1, z2) as

W(z1, z2) ≡
〈

1

Zφ1Zφ2

∫
Dφ1 Dφ2 exp

{
− i

2
φa1
†
(z1−H)φa1 −

i

2
φ
p

2
†
(z2−H)φp2

}〉
. (64)

The two-point functionG(z1, z2) is derived fromW(z1, z2) as

G(z1, z2) = lim
n,m→0

( −1

Nm

)(−1

Nn

)
∂2

∂z1∂z2
W(z1, z2). (65)

We can writeW(z1, z2) in terms of an integration over Hermitian(n+m)×(n+m) matrices,
which corresponds to equation (40) for the GOE case. The result is

W(z1, z2) = 1

ZQ

∫
DQ exp

{
−N

2
Tr(2 log i(z −Q)+Q2)

}
. (66)

The most dominant saddle point̄Q is

Q̄ =
(
w1In 0

0 w2Im

)
(67)

where

wi ≡ 1
2

(
zi −

√
zi2− 4

)
i = 1, 2. (68)

Since the connected part of the two-point function is the order O(1/N2), we must take in
the effect of fluctuations around̄Q. As we explained in the GOE case, we can regard the
fluctuations as Gaussian for the leading order of the connected part. Following the step to
derive equation (51), we obtain

W(z1, z2) = W(z1)W(z2)

(
1

1− w1w2

)nm
. (69)

Employing equation (65), the above result is translated to the language of the Green’s
function:

G(z1, z2) = G(z1)G(z2)− 1

N2

∂2

∂z1∂z2
log(1−G(z1)G(z2)). (70)

This agrees with the well known result obtained by several other methods [1, 2, 4, 11, 12].
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4. Gaussian symplectic ensemble

4.1. Definition

The GSE is the ensemble of quaternion real Hermitian matrices with the distribution (1).
We shall first recall the definition of a quaternion real Hermitian matrix.

Let us write

H =


H11 . . . H1N

H21 . . . H2N

. . . . . . . . . . . . . . .

HN1 . . . HNN

 (71)

where each entryHij is a quaternion number, which can be represented as a 2× 2 matrix.
We choose the set of the Pauli matricesσ k and the unit matrixI2 as a basis of 2×2 matrices.
ThenHij is written as

Hij = H(0)
ij I2+ i

3∑
k=1

H
(k)
ij σ

k

≡
(
H 11
ij H 12

ij

H 21
ij H 22

ij

)
. (72)

In our notation, i, j = 1, . . . , N and α, β = 1, 2 in H
αβ

ij . The matrixH is called a

quaternion real Hermitian matrix if and only ifH(0)
ij forms a real symmetric matrix whereas

H
(k)
ij (k = 1, 2, 3) form real antisymmetric matrices. These conditions are alternatively

expressed as

H 11
ij

∗ = H 22
ij

H 12
ij

∗ = −H 21
ij

H
†
ij = Hji.

(73)

Note that† in the last equation means the Hermitian conjugation when we regardHij as a
2× 2 matrix.

The trace ofH 2 in equation (1) reads

TrH 2 = Hαβ

ij H
βα

ji (74)

whereα, β = 1, 2. UsingH(µ)

ij , µ = 1, . . .4, the measure DH in this case is written as

DH =
∏
i6j

dH(0)
ij

3∏
k=1

∏
i<j

dH(k)
ij . (75)

Here, for later convenience, we consider how to construct a quaternion real Hermitian
matrix from a complex vector with an even-number component. Letφaαi (1 6 i 6 N ,
16 a 6 n, α = 1, 2) be a complex number. We regardφa ’s as the 2n-component vectors.
The diadig

κ̃(φa) ≡ φaφa† or κ̃
αβ

ji ≡ φaβj φaαi ∗ (76)
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defines the 2N×2N Hermitian matrix. For constructing a quaternion real Hermitian matrix,
we need to ‘symmetrize’̃κ(φa) in the following way:

κ̃11
ji → 1

2(κ̃
11
ji + κ̃22

ij ) ≡ κ11
ji

κ̃12
ji → 1

2(κ̃
12
ji − κ̃12

ij ) ≡ κ12
ji

κ̃21
ji → 1

2(κ̃
21
ji − κ̃21

ij ) ≡ κ21
ji

κ̃22
ji → 1

2(κ̃
22
ji + κ̃11

ij ) ≡ κ22
ji .

(77)

The matrixκ(φa) defined above is a quaternion real Hermitian matrix since it satisfies the
condition

κ11
ij

∗ = κ22
ij

κ12
ij

∗ = −κ21
ij

κ
†
ij = κji .

(78)

Another useful quaternion real Hermitian matrix is constructed as follows. We define

ψi
a1 ≡ φia1 ψi

a2 ≡ φia2∗ (79)

and make the diadigψiψ
†
i . By the same symmetrization as in equation (77), we obtain the

2n × 2n quaternion real Hermitian matrix. We shall denote the resultant matrix byλ(φi).
A straightforward calculation gives

Tr κ(φa)2 = Tr λ(φi)
2. (80)

4.2. One-point function

Let us compute the one-point functionG(z) averaged over GSE

G(z) ≡
〈

1

2N
Tr

1

z −H
〉
. (81)

SinceH is a 2N × 2N matrix, G(z) tends to 1/z as z → ∞. We assume (55) as in the
case of the GUE. The generating functionW(z) is defined by

W(z) ≡
〈

1

Zφ

∫
Dφ exp

{
− i

2
φa
†
(z −H)φa

}〉
. (82)

Note thatφa is a 2N -component vector, which implies

φa
†
Hφa ≡ φaαi ∗Hαβ

ij φ
aβ

j (83)

in equation (82). The one-point function is derived fromW(z) as

G(z) = lim
n→0

(
− 1

2nN

)
d

dz
W(z). (84)

Let us take the average overH in equation (82). We first note that

φa
†
Hφa = Tr κ̃(φa)H. (85)

We can symmetrizẽκ(φa) using the following relations

H 11
ij = H 22

ji H 12
ij = −H 12

ji (86)

which are derived from equations (73). For example, the coupling with the diagonal part
of Hij in equation (85) becomes

κ̃11
ji H

11
ij + κ̃22

ji H
22
ij = 1

2(κ̃
11
ji + κ̃22

ij )H
11
ij + 1

2(κ̃
11
ij + κ̃22

ji )H
22
ij

= κ11
ji H

11
ij + κ22

ji H
22
ij . (87)
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After a similar procedure is performed onH 12
ij andH 21

ij , it turns out that the matrixκ(φa)
defined in equation (77) can replaceκ̃(φa) in equation (85).

We are now ready to take the average overH in equation (82). That is,

−N
2

TrH 2+ i

2
φa
†
Hφa = −N

2
Tr

(
H − i

2N
κ(φa)

)2

− 1

8N
Tr κ(φa)2. (88)

The changeH → H + i
2N κ(φ

a) can be performed by shifting the integration variablesH
(µ)

ij

becauseκ(φa) is a quaternion real Hermitian matrix. It leads to

W(z) = 1

Zφ

∫
Dφ exp

(
− i

2
φa
†
zφa − 1

8N
Tr κ(φa)2

)
. (89)

Next, for the sake of integration overφ, we introduce the auxiliary matrixQ that is a
2n× 2n quaternion real Hermitian matrix. Let us consider the following integration

1

ZQ

∫
DQ exp

(
−N

2
Q
αβ

abQ
βα

ba +
i

2
ψaα
i
∗
Q
αβ

abψ
bβ

i

)
(90)

whereψi ’s (i = 1, . . . n) are defined in equation (79).
The Q-integral in equation (90) is carried out in the same way as theH -integral of

equation (82). The result is

1

ZQ

∫
DQ exp

(
−N

2
Q
αβ

abQ
βα

ba +
i

2
ψaα
i
∗
Q
αβ

abψ
bβ

i

)
= exp

(
− 1

8N
Tr λ(φa)2

)
. (91)

Thus, from equations (79), (80), (89) and (91), we conclude

W(z) = 1

ZφZQ

∫
DQDφ

(
−N

2
TrQ2− i

2
ψi
†(z −Q)ψi

)
. (92)

Performing integration overφ, we obtain

W(z) = 1

ZQ

∫
DQ exp

{
−N

2
Tr(2 log i(z −Q)+Q2)

}
. (93)

Since any eigenvalue ofQ has two-fold degeneracy [3], the eigenvalue representation of
the above integration becomes

W(z) = 1

ZQ

∫ n∏
a=1

dwa 1(w)
4 exp

{
−N

n∑
a=1

(2 log i(z − wa)+ wa2)

}
. (94)

Repeating the same argument as in the case of GUE, we obtain the result up to the
next-to leading order:

W(z) ∼ exp{−Nn(2 log(z − w−)+ w2
−)}

(
1

1− w2−

)n2−n/2
(95)

wherew− is defined in equation (61). The exponent of(1−w2
−) is different from the result

of GUE because the degree of freedom of fluctuations in the case of the GUE is given byn2

while 2n2 − n in the case of the GSE. That affects the non-vanishing first-order correction
to G(z). Namely, from equation (84), we obtain

G(z) = 1

2
(z −

√
z2− 4)

(
1− 1

2N

1

z2− 4

)
+O(1/N2). (96)
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4.3. Two-point function

Next we compute the two-point functionG(z1, z2) defined by

G(z1, z2) ≡
〈

1

2N
Tr

1

z1−H
1

2N
Tr

1

z2−H
〉
. (97)

The generating functionW(z1, z2) has the same form as the GUE case:

W(z1, z2) ≡
〈

1

Zφ1Zφ2

∫
Dφ1 Dφ2 exp

{
− i

2
φa1
†
(z1−H)φa1 −

i

2
φ
p

2
†
(z2−H)φp2

}〉
. (98)

The two-point functionG(z1, z2) is related toW(z1, z2) as follows

G(z1, z2) = lim
n,m→0

( −1

2Nm

)( −1

2Nn

)
∂2

∂z1∂z2
W(z1, z2). (99)

In order to perform the integration overH , we introduce the notation8Aα
i as

8Aα
i ≡

{
φAα1i 16 A 6 n
φA−nα2i n+ 16 A 6 n+m.

(100)

Then, since the coupling toH can be rewritten as8A†H8A, we obtain the following result
as the integration overH :

W(z1, z2) = 1

Zφ1Zφ2

∫
Dφ1 Dφ2 exp

{
− i

2
8A†z8A − 1

8N
Tr κ(8A)2

}
(101)

wherez is the following 2(n+m)× 2(n+m) matrix

z =
(
z1I2n 0

0 z1I2m

)
. (102)

According to formulae (80) and (91), we can expressW(z1z2) by 2(n + m) × 2(n + m)
matrixQ:

W(z1, z2) = 1

Zφ1Zφ2ZQ

∫
Dφ1 Dφ2 DQ exp

{
− i

2
8i
†z8i − N

2
TrQ2+ i

2
9i
†Q9i

}
= 1

Zφ1Zφ2ZQ

∫
Dφ1 Dφ2 DQ exp

{
−N

2
TrQ2− i

2
9i
†(z −Q)9i

}
(103)

where9 is defined in the same way as equation (79):

9i
A1 ≡ φiA1 9i

A2 ≡ φiA2∗. (104)

After the integration over the vector variables, we obtain

W(z1, z2) = 1

ZQ

∫
DQ exp

{
−N

2
Tr(2 log i(z −Q)+Q2)

}
. (105)

The most dominant saddle point̄Q is

Q̄ =
(
w1I2n 0

0 w2I2m

)
. (106)

Next we compute effects of fluctuations aroundQ̄

W(z1, z2) = W(z1)W(z2)

(
1

1− w1w2

)2nm

. (107)
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Employing equation (65), the above result is translated to the language of the Green’s
function:

G(z1, z2) = G(z1)G(z2)− 1

2N2

∂2

∂z1∂z2
log(1−G(z1)G(z2)). (108)

This result, with respect to the connected part, agrees with that obtained by solving functional
equations [4, 11] and by a diagrammatic method [12]. Especially the disconnected part up
to 1/N2 order in equation (108) is consistent with [11].

5. Three-point function

Finally, we calculate the connected three-point function in each Gaussian ensemble. That
in the GOE case is defined by

G(z1, z2, z3) ≡
〈

1

N
Tr

1

z1−H
1

N
Tr

1

z2−H
1

N
Tr

1

z3−H
〉
. (109)

As is the case of one- and two-point functions, we construct the generating function of
G(z1, z2, z3) using threen-flavour real vectors:

W(z1, z2, z3) =
〈

1

Zφ1Zφ2Zφ3

∫ 3∏
i=1

Dφi exp

{
−

3∑
j=1

i

2
tφaj (zj −H)φaj

}〉
. (110)

The three-point functionG(z1, z2, z3) is derived fromW(z1, z2, z3) as

G(z1, z2, z3) = lim
n→0

(−2

Nn

)3
∂3

∂z1∂z2∂z3
W(z1, z2, z3). (111)

We can writeW(z1, z2, z3) in terms of an integration over 3n× 3n real symmetric matrix.
The result is

W(z1, z2, z3) = 1

ZQ

∫
DQ exp

{
−N

2
Tr(log i(z −Q)+Q2)

}
. (112)

The most dominant saddle point̄Q is

Q̄ =
(
w1In 0 0

0 w2In 0
0 0 w3In

)
(113)

where

wi ≡ 1
2

(
zi −

√
zi2− 2

)
i = 1, 2, 3. (114)

Next we consider fluctuations around the saddle pointQ̄.

W(z1, z2, z3) = e−S0

ZQ

∫
D(δQ) e−S2−

∑∞
l=3 Sl (115)

where

S0 = N

2
Tr(log i(z − Q̄)+ Q̄2) (116)

S2 = 1
2 Tr((δQ)2− (Q̄δQ)2)

= 1
2

3∑
i,j=1

n∑
a,b=1

(1− wiwj )(δQij

ab)
2 (117)

Sl = 1

lNl/2−1
Tr(Q̄δQ)l l > 3. (118)
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Since the connected part of three-point function is of the order 1/N4, we must calculate the
following Gaussian integral withS4 andS2

3 terms:

W(z1, z2, z3)= e−S0

ZQ

∫
D(δQ) e−S2

{
1−

∞∑
l=3

Sl + 1

2!

( ∞∑
l=3

Sl

)2

− · · ·
}

= e−S0

{
1− 〈〈S4〉〉 + 1

2!
〈〈S2

3〉〉 +O(1/N5)

}
(119)

where

〈〈· · ·〉〉 = 1

ZQ

∫
D(δQ)(· · ·) e−S2. (120)

Calculating equation (119), we have

W(z1, z2, z3) = n3

2N
F(z1, z2, z3) (121)

where

F(z1, z2, z3) = X12

1−X12

X23

1−X23

X31

1−X31
+ X31

1−X31

X12

1−X12

1

1−X11

+ X12

1−X12

X23

1−X23

1

1−X22
+ X23

1−X23

X31

1−X31

1

1−X33
(122)

Xij = 2wiwj = 1
2G(zi)G(zj ). (123)

Substituting the above formula into equation (111), we can derive the three-point function

GC(z1, z2, z3) = − 4

N4

∂3

∂z1∂z2∂z3
F(z1, z2, z3). (124)

The connected part in this result agrees with that obtained by other methods [10–12].
Next we turn to the connected three-point function in the GUE case along the way in the

case of GOE. We construct a generating functionW(z1, z2, z3) by employing threecomplex
vectors as follows

W(z1, z2, z3) =
〈

1

Zφ1Zφ2Zφ3

∫ 3∏
i=1

Dφi exp

{
−

3∑
j=1

i

2
φaj
†(zj −H)φaj

}〉
. (125)

The three-point function is derived fromW(z1, z2, z3) in the following formula:

G(z1, z2, z3) = lim
n→0

(−1

Nn

)3
∂3

∂z1∂z2∂z3
W(z1, z2, z3). (126)

W(z1, z2, z3) is written in the form of theQ-integral

W(z1, z2, z3) = 1

ZQ

∫
DQ exp

{
−N

2
Tr(2 log i(z −Q)+Q2)

}
(127)

whereQ is a 3n×3n Hermitian matrix. The most dominant saddle pointQ̄ is

Q̄ =
(
w1In 0 0

0 w2In 0
0 0 w3In

)
(128)

where

wi ≡ 1
2

(
zi −

√
zi2− 4

)
i = 1, 2, 3. (129)
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The dominant contributions toW(z1, z2, z3) becomes

W(z1, z2, z3) = n3

N
F(z1, z2, z3) (130)

where

F(z1, z2, z3) = X12

1−X12

X23

1−X23

X31

1−X31
+ X31

1−X31

X12

1−X12

1

1−X11

+ X12

1−X12

X23

1−X23

1

1−X22
+ X23

1−X23

X31

1−X31

1

1−X33
(131)

Xij = wiwj = G(zi)G(zj ). (132)

Thus, the three-point function in GUE is

GC(z1, z2, z3) = − 1

N4

∂3

∂z1∂z2∂z3
F(z1, z2, z3). (133)

The connected part in this result agrees with that obtained by other methods [1, 10–12].
Finally, we calculate the connected three-point function in GSE case. That in this case

is defined by

G(z1, z2, z3) ≡
〈

1

2N
Tr

1

z1−H
1

2N
Tr

1

z2−H
1

2N
Tr

1

z3−H
〉
. (134)

The three-point function derived from the generating function is as follows

G(z1, z2, z3) = lim
n→0

( −1

2Nn

)3
∂3

∂z1∂z2∂z3
W(z1, z2, z3). (135)

And the generating function is calculated as

W(z1, z2, z3) = 1

ZQ

∫
DQ exp

{
−N

2
Tr(2 log i(z −Q)+Q2)

}
(136)

whereQ is a 6n×6n quaternion real Hermitian matrix. The most dominant saddle pointQ̄

is

Q̄ =
(
w1In 0 0

0 w2In 0
0 0 w3In

)
(137)

where

wi ≡ 1
2

(
zi −

√
zi2− 4

)
i = 1, 2, 3. (138)

Performing a 1/N -expansion forW(z1, z2, z3),

W(z1, z2, z3) = 4n3

N
F(z1, z2, z3) (139)

where

F(z1, z2, z3) = 4X12

1−X12

X23

1−X23

X31

1−X31
+ X31

1−X31

X12

1−X12

1

1−X11

+ X12

1−X12

X23

1−X23

1

1−X22
+ X23

1−X23

X31

1−X31

1

1−X33
(140)

Xij = wiwj = G(zi)G(zj ). (141)

The three-point function becomes

GC(z1, z2, z3) = − 1

2N4

∂3

∂z1∂z2∂z3
F(z1, z2, z3). (142)

The connected part in this result agrees with that obtained by other methods [11, 12].
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6. Concluding remarks

We have calculated the averaged one-point Green’s functions, the wide connected two-
and three-level correlators in Gaussian orthogonal, unitary and symplectic random matrix
ensembles by the replica method. The one-point Green’s functions have been calculated to
the next-to-leading order in the 1/N expansion in GOE and GSE. Our results are consistent
with those obtained by other methods [4, 11, 12]. We have notified that there are some
regions of the spectral parameterz where the employed saddle-point evaluation cannot
work well for averaged Green’s functions. In those regions, the fluctuation of the auxiliary
variableQ becomes large and the higher orders in the saddle-point expansion give the same
contribution with the order O(N0). To calculate the short-distance correlator we have to
employ other methods for the integration instead of the saddle-point evaluation.
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