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Abstract. We calculate connected correlators in Gaussian orthogonal, unitary and symplectic
random matrix ensembles by the replica method in thé-gxpansion. We obtain averaged one-
point Green'’s functions up to the next-to-leading ord€iV), wide two-level correlators up

to the first non-trivial order O./Nz) and wide three-level correlators up to the first non-trivial
order Q1/N*) by carefully treating fluctuations in saddle-point evaluation.

1. Introduction

Recently, the universality of the wide-distance two-level connected correlator in random
matrix theories was shown by Ambjgret al [1]. Brézin and Zee [2] regarded this
universality as important from the viewpoint of physics in disordered systems. Since
the correlator does not depend on the probability distribution of a matrix ensemble, we
may use the correlator calculated in the corresponding simple Gaussian ensemble with
the same symmetry for the non-trivial disordered system in concern. Compared with the
short-distance correlator which is already well known as a universal quantity [3], the wide
correlators are able to be calculated explicitly in extensive types of ensembles in various
ways [4,5]. Actually, one observes the strongly universal properties which random matrix
theories have themselves in the wide connected correlators. Their universality classification
is also done in [6]. These mathematical studies of random matrix theories themselves enable
us to recognize the real universal nature of level statistics.

In this paper, we examine the replica method to calculate the wide connected two-level
correlator in Gaussian orthogonal (GOE), unitary (GUE) and symplectic (GSE) ensembles.
These simple ensembles GOE, GUE and GSE can describe a time reversal system without
spin, a general system and a time reversal system with spin, respectively [3]. The replica
method is well known as a convenient scheme to calculate the two-body Green’s function in
some models of the Anderson localization [7]. Even though this method cannot calculate the
short-distance correlator [8] well, here we show that this method is useful for calculating
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the wide two-level correlator in the/N expansion. This method is much simpler than

the supersymmetry method which enables us to calculate both the wide- and short-distance
correlators [8,9]. Here, we remark the reason why the replica method is not good for the
short-distance correlator. We are going to calculate the explicit form of the two- and three-
level correlators in GOE, GUE and GSE, which are identical to those calculated by solving
functional equations [4, 11] or by the diagrammatic method [12]. Here we study a matrix
theory defined by the following probability distribution

P(H) = zi exp<—]; TrH2> Zy = / DH exp<—1;/ TrH2) (1)

H

where H is an N x N matrix. The explicit form of the measure D depends on a type

of an ensemble off. Our interest is focused on computing averaged Green'’s functions by
the replica method. We show their calculation method explicitly for GOE in section 2, for
GUE in section 3 and GSE in section 4. We calculate three-level correlators in section 5.

2. Gaussian orthogonal ensemble

To begin with, we explore the case of the GOE which is defined by the ensemble of real
symmetric matrices obeying the probability distribution (1). The measufeiDexplicitly
written as

N
DH = [ [ dHy [ [ dH;;. (2)
k=1

i<j

2.1. One-point function

We calculate the averaged one-point function

1 1
— E/DH P(H)=Tr—M—. (3)
z—H —le N z—H—le
Note that—ie (¢ > 0) means thatG(z) considered here is the advanced Green'’s function.
We assume

1
G(z) = <N Tr

Iz > /2 (4)

in the case of the GOE. The meaning of this assumption will be clarified later. Results for
lz| < +/2 will be extracted employing the analytic continuation that is uniquely determined
by —ie.

In order to apply the replica method, we first introduce ikféavour real vectors having
N component(¢f)i<i<y, Where the superscript, which runs from 1 ton, specifies the
flavour. Let us consider the following integration owgrfor constructing a generating
function of G(z):

1 i .
[z, H] = 27, / D¢ exp{—lz’q&“(z —H-— |e)¢“} Zy = /D¢ exp(—%’¢“¢“)
©)

where the superscript means transposition and the summation over the repeated indices
are implicitly taken. The measure is defined by

n N
Do =[] ]der- (6)

a=1i=1
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Note that the integration ovep for I' converges owing to-ie. Hereafter we do not
explicitly write —ie for brevity.
Taking the derivative with respect tg we have

I'lz, H
M — i det_"/z(i(z — H))
0z a0z
n 1
—__ n/2¢c, _
= ZWZ_Hda‘U@ H)). 7
We defineW (z) as the average df over H:
W(z) = (I'[z, H]). (8)
It follows from equation (7) that
. 2\ d
G(z) = ,i";no (_nN) CTZW(Z) 9)

which indicates thaW (z) plays the role of a generating function 6f(z). Note that we
need to take the limit — O in order to eliminate the determinant factor in equation (7).

Let us computéW (z). The average oveH in equation (8) is explicitly carried out and
we have

1 i 1
- = D _tga a_itabZI 10
W) Z¢f ¢eXp<2¢Z¢ 8N(¢¢)) (10)
The quartic interaction can be represented as
1o b2 L / N by
- =—_—|D - — 11
eXp( 8N( ¢ ¢ ) ) ZQ Q exp 2 Qabea + 2 ¢ ¢ Qab ( )
where(Q)., is the real symmetria x n matrix and the normalization factor is defined by
N
Zo = / DO eXp(—z Qabea)- (12)
Using representation (11) we obtain
1 N i
=—— [ DOD —TrQ%— ~¢i(z — : ). 13
o=, [podsen(-yTor-ec-00). @3

Note that indices: andb are implicitly summed in the above notation: we regardas an
n-component vector.
The ¢-integral becomes Gaussian and we find

W(z) = le f DQ exp{—;V Trdlogi(z — Q) + QZ)}. (14)
It can be written as integration over eigenvalues [3]

W(z) = ;; /i[ldua |A(u)| exp{ — Nai;g(ua)} (15)
whereC, is a constant that depends srand A () is the Van der Monde determinant

A(u) = H(“a — Up). (16)

a<b

The functiong appeared in the exponent is defined by
g(x) = 3(l0gi(z — x) +x?). a7
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Now we computeW (z) by the I/ N-expansion. Let us first compute it in the leading
order. Since the contribution from the Van der Monde determinant in equation (15) is
neglected in the leading order,’s completely decoupled each other aidz) is evaluated
by a single-variable integration, i.e.

W(z) ~ constan(/du eXp{—Ng(u)}) (18)
in the leading order. We can evaluate the right-hand side of (18) by the saddle-point method.
The saddle-point equation is

1
2(z —u)
We have the two solutions., where

us =1 (z +722 - 2) . (20)

We find that the contribution to integral (18) fram~ u_ dominates over that froma ~ u, .
In fact, a straightforward calculation gives

+u=0. (19)

g'u)=—

Reg(u_) < Reg(uy) if z>+/2. (21)
Therefore we obtain
W (z) ~ constant gV"s-) (22)

in the leading order. Inserting the above result into equation (9), we obtain the well known
result

G)=z—-Vz2-2 (23)

where the overall constant in equation (22) is chosen such@liat should satisfy the
boundary conditiorG(z) — 1/z asz — oo.

We can compute higher-order corrections by expangifg ) in equation (15) around
u—=u_

1 o N2
) = gu) + S8 W )yg + 2_; — gy (24)
where we denote
ug —u_ = N2y, (25)

Here we shall calculate up to the first-order correction, which is sufficient for determining
the connected two-point function, as we will see below. To this end, we can neglect the
cubic and the higher terms in equation (24). Then we find

W(z) ~ C,e Vst / [ [dyalal exp{ - ;Zg”w)yi} (26)
a a=1

up to the next-to-leading order. Note that
g () =1—2u?

=V2=2(z -2 -2) (27)
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which is real and positive under assumption (4). Therefore the integrationypvgreasily
performed going back to the representation of an integration over real symmetric matrices.
Since there ara(n + 1)/2 independent variables in a real symmetric matrix, we obtain

C 1< 1 1
n A _ - " 3 2 - = D T _ 2
Zg/]:[dm (y)|exp{ Z;g (u )ya} ZQ/ qexp{ 14T )%qab}

1 n(n+l)/4
=— . 28
(v5) &

Thus we conclude
1 >n(11+1)/4

W(z) ~ g () <g//(u )

up to the next-to-leading order. Using equations (9) and (27), we obt&hn including the
first-order correction:

G&%z@—w&2—@<1+£;ﬁi2>+OaﬂW) (30)
This result is identical to that obtained in [11].

Here we comment on the validity of the saddle-point method in equation (28). The
saddle-point evaluation in the/& expansion holds only in the region whegé(u_) is
O(N%). This approximation becomes incorrect for= ++/2 + O(1/N) which yields
g"(u-) = O(1/N).

(29)

2.2. Two-point function

Now we turn to the two-point function
1 1 1 1
G(z1,z2) ={(=Tr — Tr .
(z1, z2) <N W HN 22_H>
We shall show how to computeide correlation by the replica method, i.e. we assume
71 — z2 ~ O(N°) as well as condition (4).
As is the case of the one-point function, we start with the following integral

(31)

I[z1, 22, H] =

[ i
D¢y Depr €Xpy—= "¢ (z1 — H)PS — = '¢5 (zo — H)pS . (32
Z¢1Z¢2 / ¢1 Do Xp{ 2 ¢1 (z1 )¢1 2 ¢2 (z2 )¢2} ( )
Here we have introduced the two species of vectors labelled by 1 and 2. The two species
respectively haver- and m-flavour, which means that X « < n and 1< p < m. We
averageZ[zi, z2, H] over H and defineW (z1, z2), a generating function ofi (z1, z2)

W(z1, z2) = (T[z1, 22, H]). (33)
The two-point function is derived frorW (z1, z2) in the following formula:
-2\ [ -2\ 9
G(z1, = i — — Wi(zq, z2). 34
(z1, 22) n,rlnr20<Nm) (Nn) 32:9% (z1, 22) (34)

Our strategy for computin® (z1, z2) is the same as in the case of the one-point function.
Namely, we first perform the integration ov&lr of W(z1, z2). Secondly, we introduce the
auxiliary matrix Q in order to carry out the integration ovex and ¢,. The integration
over the vector variables bring us the theory describe@byhich can be investigated by
the saddle-point method for largeé.
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The first step is easily performed. We have

i
W(z1,22) = /D¢1D¢2 expl — - ("¢i{z1d] + "¢5z203)
Z¢1Z¢z 2
1
gy (0101 + 0L0p2). )
Next, let us introduce thé: + m) x (n + m) real symmetric matrix2 using the following
expression:
11 12
0-(%: %) 39)

where Q' and Q%2 aren x n andm x m real symmetric matrices respectively. Singe
is real symmetricQ'2, which is ann x m matrix, satisfiesQ'? = QL. In order to write
down a formula corresponding to (13), we employ the following notations:

o = (¢’1f > 37)

o2
which is (n + m)-component vectors, and
_ len 0
g ‘( 0 Z21m> (38)

where [, is the unitn x n matrix. We can check that the right-hand side of equation (35)
is identical to

/DQ D¢1 D¢, exp{—ZTr Qz—ith’i(z— Q)(Di}~ (39)

ZQ Z¢1 Z¢2

After integrating the vector variables, we acquire

W(z1.22) = le / DQ exp{—];, Trdlogi(z — Q) + Q2)} . (40)
We analyse the above integral formula by the saddle-point method. The saddle-point
equation is
(z-0)'=20 (41)
or equivalently,
20z — 01 — 20202 =1
20102 1 202z, — 0% =0
20%(z1 — O — 2020%1 = 0
202202 1 20%2(z, — 0% = 1.
After transposing the third equation and subtracting it from the second equation, we find

Q12 — Q21 =0 (43)

(42)

The remaining equations containir@'! and Q% are solved by diagonalization. Suppose
that Q** and Q22 are respectively diagonalized l&y; and 0,. Explicitly,

10,00, = diagus, .. . , uy) 10,0720, = diag(va, ..., vy).  (44)
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Then the equations to be solved are
. 1
20z —ua)
_ 1
T 2z — vy)
which have the same form as the saddle-point equation that appeared in section 2.1.

Following the argument on the most dominant saddle point that is carried out in the one-point
function, we should choose the saddle point

Ug

(45)

Uy =U_ for all a
(46)
v, = U for all p.

Performing the inverse transformation of equation (44), we obtain the most dominant saddle
point Q in the original basis:

= u_lI, 0

o-("" %) @7)
Next we consider fluctuations around the saddle p@ntUsing the identity

Triog(A +38A) = TrlogA + TrA 164 — JTrA" "6 AA16A + - - (48)

and the saddle-point equation (41), we have

Tr(logi(z—Q—jQN)jL(QﬂLf/QN)z)

— Trdogi(z — 0) + 0% + % Tr302 — 2500500) + - (49)

Inserting the explicit form (47) into the above, we see that the generating function becomes

W(z1, 22) ~ ZlgeN"g“'-) f DGO exp{—3(1— 2u_?) Tr(sQ'H?

x g Nms(v-) / D(80%) exp{—3(1 — 2v_?) Tr(8 Q%%
x / D0 exp{—(1—2u_v_) Tr(80'??} (50)

up to the next-to-leading order. Remembering tat_) = 1 — 2u?, we obtain

g 1 n(n+1)/4 Nmg(o) 1 m(m+1)/4 1 nm/2
W , — @ Nnglu- g Nmeg(v-
(.52 (i) () (2

1 nm/2
=Wz W(z2) (].—Zu_v_) . (51)

Inserting the above formula into equation (34), we can derive the two-point function.
Differentiating W(z1) and W(z2) brings about the disconnected paft(z1)G(z2), while
the last factor contributes to the connected part. Thus we obtain

2

2
G(z1.22) = G(z)G(z2) — —5
(z1,22) (z1)G(z2) N2 92102

where we have used equation (9) and 2= G(z1) + O(1/N). This result, with respect
to the connected part, agrees with that obtained by solving functional equations [4, 11]

log (1 - ;G(m)G(Z2)> (52)
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and by a diagrammatic method [12]. Especially the disconnected part upMé drder in
equation (52) is consistent with [11].

The saddle-point evaluation holds only in the case ef u_v_ = O(N?), as pointed
out in the calculation of the one-point Green’s function. When we compute the following
two-level correlators:

<1Tr LS > (53)
N z1—H+4+leN 20— H—le

the coefficient of Gaussian fluctuations becomes 2u,v_. The result of the saddle-
point method should be trusted only for — z» = O(N°) indicated by the definition of..
equation (20). Therefore, the short-distance two-level correlators should be calculated using
other methods instead of the saddle-point evaluation.

3. Gaussian unitary ensemble

We turn to the case of the GUE, which means the ensemble of Hermitian matrices following
the Gaussian distribution (1). The measurH I explicitly written as

DH = [ [d(ReH;;) [ [d(m H;;). (54)

i<j i<j
We can proceed with a computation as in the case of GOE. We assume
lz| > 2 (55)

in the case of the GUE, which corresponds to assumption (4). We can construct a generating
function W (z) by employingcomplexvector variables as follows

W(z) = <Zl / D¢ eXp{—lzfiﬁ“T(Z - H)¢“}> (56)
¢
where
n N
D¢ = [ [[ [ d(Re¢) d(im ¢). (57)
a=1i=1

We can readily show that

d

. 1
G(z) = l[no <_nN> CTZW(Z) (58)

in a similar way to the derivation of (9). A difference between equation (9) and equation (58)
arises because the complex vector variables contribute twice compared with the case of real
vector variables. We first take the average okelin (56) and we introduce a Hermitian
auxiliary matrix Q,, along the line with the case of the GOE. See equations (10)—(13).
Then the integration over the complex vector variables gives

W(z) = Zlg / DO exp{—g] Tr(2logi(z — Q) + QZ)}

C, I N & '
= ng /L[ldwa A(w)2 exp{ ~3 Z(2|og i(z — w,) + waz)}. (59)

a=1
DiagonalizingQ, we obtain the saddle-point equation corresponding to equation (19)

o, tw=0 (60)
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The most dominant saddle pointus_7,, in which

w_ =1 -2 4. (61)

We expand the exponent of (59) around I, and ighore the cubic and higher terms of the
fluctuation in the same way as we did for GOE. The Gaussian integration of the fluctuation
is easily performed, from which we derive

2

N 1 nc/2
W) ~ exp]— - 2log(z — w) + w?) | [ (62)
2 1— w2
up to the next-to-leading order. Using this result and equation (58), we obtain
G(2) =} (z = V2 = 4) + OW/N?). (63)

Note that first-order corrections vanish in this case.
The two-point function defined in equation (31) is also calculated following the case of
GOE. Using complex vectors, we define the generating fundlidm, z2) as

i i
W(z1,22) = <Z Z /D¢1 D¢2 exp{—zcﬁi’T(Q — H)¢i — écﬁé’T(Zz - H)¢§}>. (64)
142
The two-point functionG (z1, z2) is derived fromW (z1, z2) as
-1 -1 92
= I — .
G(z1,722) = im <Nm> (Nn) 8213Z2W(Z1’ 72) (65)

We can writeW (z3, z2) in terms of an integration over Hermitian+m) x (n+m) matrices,
which corresponds to equation (40) for the GOE case. The result is

1 N .
W(z1,22) = 7 f Do exp{—z Tr2logi(z — Q) + QZ)} . (66)
0
The most dominant saddle poig is
= I, 0
0= (“’B ol > (67)
where
=1 ( 2 _ 4) =12
w; =5 |z Zi i=12 (68)

Since the connected part of the two-point function is the ordgry/®2), we must take in

the effect of fluctuations aroun@. As we explained in the GOE case, we can regard the
fluctuations as Gaussian for the leading order of the connected part. Following the step to
derive equation (51), we obtain

1 nm
W(z1,z22) = W(z0)W(z2) <1—w1w2) . (69)

Employing equation (65), the above result is translated to the language of the Green’s
function:
2

N2 9z,025 1022
This agrees with the well known result obtained by several other methods [1,2,4,11,12].

G(z1,22) = G(21)G(z2) — log(1 — G(z1)G(z2)). (70)
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4. Gaussian symplectic ensemble

4.1. Definition

The GSE is the ensemble of quaternion real Hermitian matrices with the distribution (1).
We shall first recall the definition of a quaternion real Hermitian matrix.
Let us write

Hiy1 ... Hiy
H— Hyy ... Hyy (71)
Hy1 Hyn

where each entryd;; is a quaternion number, which can be represented as @ Pnatrix.
We choose the set of the Pauli matriedsand the unit matrix¥, as a basis of 2 2 matrices.
Then H;; is written as

0 k
Hy=HL +IZHi(].)ak

it HA1.2
= ( e '52> . (72)
HFY H?
In our notation,i,j = 1,...,N anda,8 = 1,2 in Hi‘;‘g. The matrix H is called a

guaternion real Hermitian matrix if and onIyHl.(jp) forms a real symmetric matrix whereas

Hi(j") (k = 1,2,3) form real antisymmetric matrices. These conditions are alternatively
expressed as

H.l,l* = H?.Z
H,.Tj = Hj,-.

Note that' in the last equation means the Hermitian conjugation when we reidards a
2 x 2 matrix.
The trace ofH? in equation (1) reads

2 _ pyoB pyBa
TrH? = H H, (74)
wherea, 8 = 1, 2. Using Hi(j“), w=1...4, the measure B in this case is written as
_ V) (k)
H =]]dH] ]’[1]"[dH.j . (75)
) i<j

Here, for later convenience, we consider how to construct a quaternion real Hermitian
matrix from a complex vector with an even-number component. ¢ft(1 < i < N,
1<a<n a=12)beacomplex number. We regapl's as the 2-component vectors.

The diadig

R =¢'¢"  or & =¢ e (76)
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defines the & x 2N Hermitian matrix. For constructing a quaternion real Hermitian matrix,
we need to ‘symmetrizet (¢*) in the following way:

~11 1,~11 ~22y 11
Kji = 2K + ki) = Kji

~12 1,~12  ~12 12
K" — é(/cﬁ — Kij ) = Kji 7
~21 1,~21  ~21y _ 21
ki — é(/cle — ki ) = Kii

~22 1,22 | ~11y _ 22
Ki”— Q(Kjl- +Kij ) = K5
The matrixx (¢“) defined above is a quaternion real Hermitian matrix since it satisfies the

condition

116 _ 22
ij = Kij

i = o 79
f
ij
Another useful quaternion real Hermitian matrix is constructed as follows. We define
vt = ¥ = % (79)
and make the diadigriwf. By the same symmetrization as in equation (77), we obtain the
2n x 2n quaternion real Hermitian matrix. We shall denote the resultant matrix(y).
A straightforward calculation gives

Tric(¢“)? = Tra(¢p)?. (80)

Kii = Kji.

4.2. One-point function

Let us compute the one-point functi@n(z) averaged over GSE
1 1
G =(—Tr . 81
2 <2N z— H> 81)
SinceH is a 2N x 2N matrix, G(z) tends to ¥z asz — oo. We assume (55) as in the
case of the GUE. The generating functi#(z) is defined by

1 [
W(z) = < / D¢ exp{—w*(z - H)¢“}>. (82)
Z, 2
Note that¢? is a 2V-component vector, which implies
¢aTH¢a = ¢?a*l-1[(;ﬁ¢;lﬂ (83)
in equation (82). The one-point function is derived fro¥(z) as
1 d
G =Ilim(—-"-) ~W(). 84
@) nILno( 2nN> dz @ (84)
Let us take the average ovéf in equation (82). We first note that
¢“THo® = Tric(¢*)H. (85)
We can symmetriz& (¢*) using the following relations
11 22 12 12
H' = Hj HY? = —Hj (86)

which are derived from equations (73). For example, the coupling with the diagonal part
of H;; in equation (85) becomes

~117711 ~227y22 __ 1,.~11 ~22 11 1,~11 ~22 22
KjiHij + kGG = 5 (K + kD -+ 5 (G + K5O Hij

114511 224522
= Kji HU +Kji Hlj . (87)
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After a similar procedure is performed (H‘ﬁ.z and Hl.i.l, it turns out that the matrix (¢¢)

defined in equation (77) can replag&) in equation (85).
We are now ready to take the average okein equation (82). That is,

_ﬁ 2 l at “__ﬁ _L a z_i a\2
5 THH? + ¢ Hy' = 2Tr<H oy < (@ )> gy 1@, (88)

The change — H + 5k (¢“) can be performed by shifting the integration variab#s4’
becausex (¢“) is a quaternion real Hermitian matrix. It leads to

1 [ 1
W(z) = Z / D¢ exp<—|2¢“'z¢“ ~aN Tr;<(¢>”)2>. (89)

Next, for the sake of integration over, we introduce the auxiliary matri@ that is a
2n x 2n quaternion real Hermitian matrix. Let us consider the following integration

1 N «, o I ao* (&7
Z f DQ eXP(—ZQaf e + Vi Qafw!"’) (90)
wherey;'s (i = 1,...n) are defined in equation (79).

The Q-integral in equation (90) is carried out in the same way asHhmtegral of
equation (82). The result is

1 N e e awx o bﬁ)_ <_1 u2>
Zo /DQ exp( zQab ba + 2% 0., ¥ | =exp 8N Tra(¢p®) ). (92)
Thus, from equations (79), (80), (89) and (91), we conclude
_ 1 Nror— w0y

W(z) = ZoZo /DQ D¢ ( 5 Tro 21#, (z Q)%)- (92)
Performing integration ovep, we obtain

W(z) = Zi / DO exp{—];, Tr(2logi(z — Q) + QZ)}. (93)

0

Since any eigenvalue af has two-fold degeneracy [3], the eigenvalue representation of
the above integration becomes

W(z) = zlg / [ [ dwa AGw)* exp{ — N logi(z — w,) + waz)}. (94)
a=1 a=1

Repeating the same argument as in the case of GUE, we obtain the result up to the
next-to leading order:
2
1 nc—n/2
) (95)

1—-w

W(z) ~ exp{—Nn(2log(z — w_) + w?)} (

wherew_ is defined in equation (61). The exponent(df- w?) is different from the result

of GUE because the degree of freedom of fluctuations in the case of the GUE is givén by
while 222 — n in the case of the GSE. That affects the non-vanishing first-order correction
to G(z). Namely, from equation (84), we obtain

1 1 1
G = 5 —:2 -4 (1— N -2

4> + O(1/N?). (96)
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4.3. Two-point function

Next we compute the two-point functiofi(z,, z2) defined by
1 1 1 1
G(z1, =({—Tr—— —Tr—— ).
(21, 22) <2N - H2N 25— H>
The generating functiofV (z1, z2) has the same form as the GUE case:

(97)

i i
W(z1,22) = < /D¢1 D¢2 eXp{—d)iT(m — H)¢{ — f¢§T(Z2 - H)¢§}>- (98)
Z¢71Z¢z 2 2
The two-point functionG (z1, z2) is related toW (z1, z2) as follows
-1 -1 32
G(z1,z2) = lim W (z1, 22)- 99
(z1, z2) n,m~>0<2Nm) (2Nn> 97107 (z1, 22) (99)
In order to perform the integration ovéf, we introduce the notatiod#* as
o 1<A<n
e = ‘f’;z (100)
% n+1<A<n+m.

Then, since the coupling t& can be rewritten a@“Hd)A, we obtain the following result
as the integration oveH:

N 1
W(z1, 22) = / D¢, Dgpo exp{—'@“zcbA — TrK(ch)Z} (101)
142 2 8N
wherez is the following 2n 4+ m) x 2(n + m) matrix
[ zal 0
z= ( 0 Zl]zm) . (102)

According to formulae (80) and (91), we can expréBgziz2) by 2(n + m) x 2(n + m)
matrix Q:

1 i N i
w =_— | Dp1D¢,D ——®;fzd;, — — Tro?+ W1y,
(z1, 22) Z¢1Z¢ZZQf ¢1 D2 Qexp{ 5Pi'z 5 ro +2 o }
N i
=_ "~ | D¢.D¢p,D ——TrQ’— v,z — Q)W 103
Z¢1Z¢ZZQ/ 1 Doz QeXP{ 5 ro > (z—0) } (103)
whereW is defined in the same way as equation (79):
v;Al = At W42 = 47" (104)
After the integration over the vector variables, we obtain
1 N .
W(z1,22) = 7 / DO exp{—2 Tr(2logi(z — Q) + QZ)} . (105)
0
The most dominant saddle poig is
A U)]_Izn 0
o- (" 0. (106

Next we compute effects of fluctuations arou@d

1 2nm
W(z1, z2) = W(z0) W (z2) <1—w1w2) . (107)



5722 C ltoi et al

Employing equation (65), the above result is translated to the language of the Green'’s

function:
2

1 d
G(z1,22) = G(z1)G(z2) — 2N 92107 l0g(1 — G(21)G(22)). (108)

This result, with respect to the connected part, agrees with that obtained by solving functional
equations [4, 11] and by a diagrammatic method [12]. Especially the disconnected part up
to 1/N? order in equation (108) is consistent with [11].

5. Three-point function

Finally, we calculate the connected three-point function in each Gaussian ensemble. That
in the GOE case is defined by

1 11 11 1
G(z1, 70, =({—-Tr —Tr ~ ’
(21, 22, 23) <N “w—HN 22— HN Zs—H>

As is the case of one- and two-point functions, we construct the generating function of
G (z1, 22, z3) using threen-flavour real vectors:

(109)

1 3 3
W(z1,22,23) = </ D¢: exp{ - ¢z — H)¢‘-’}>- (110)
Z¢1Z¢2Z¢3 11:;11 ]Z]:. 2 !
The three-point functiorG (z1, z2, z3) is derived fromW (z1, z2, z3) as
AN
G(z1,22,z3) = lim | — | —— W (z1, 22, 23). 111
(21, 22, 23) 11—>O(N ) 021022923 (z1, 22, 23) (111)

We can writeW (z1, z2, z3) in terms of an integration ovem3x 3n real symmetric matrix.
The result is

1 N .
Wzt 22,289 = / DO eXD{—Z Tr(logi(z — Q) + Qz)} : (112)
0
The most dominant saddle poigk is
_ wlln 0 0
0= < 0 wy, O ) (113)
0 0 wgln
where
w =1 (z,- V2= 2) i=123 (114)
Next we consider fluctuations around the saddle p@int
_SD ~
Wz, 22,29 = / D(Q) e % 2= (115)
)
where
N i 2 ~2
So = > Tr(logi(z — Q) + 09 (116)
S2=3Tr(3Q)* — (080))
3 n
=35> Y A—ww)©0g)° (117)
i,j=1a,b=1
S, = 1 Tr(Q50) [ >3 (118)

IN/2-1
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Since the connected part of three-point function is of the ordat*1we must calculate the
following Gaussian integral witls, and S§ terms:

—So o 1 o0 2

=3 1=3

1
=e™ { = {(Sa) + 5; ((53)) + O(l/NS)} (119)
where
1
{--N= / DGQ)(--)e . (120)
Zy
Calculating equation (119), we have
R
W(z1, 22, 23) = ﬁF(Zl, 22, 23) (121)
where
X12 X2z Xa:1 Xz X2 1
F 9 bl =
(1. 22, 23) 1-X151—X31— X3 * 1-X311—-X101—-X11
X12 X3 1 X23 X31 1
122
+1—X121—X231—X22+1—X231—X311—X33 (122)
Xij = 2wiw; = 3G(z)G(z)). (123)
Substituting the above formula into equation (111), we can derive the three-point function
33
Gc(z1,22,23) = — F(z1, 22, 23). (124)

N4 921022073
The connected part in this result agrees with that obtained by other methods [10-12].

Next we turn to the connected three-point function in the GUE case along the way in the
case of GOE. We construct a generating functidtx1, z», z3) by employing threeomplex
vectors as follows

3
W(z1, 22, 23) = <Z¢th¢ / QD‘b" exp{ ; ¢”*(z, H>¢>;-’}>- (125)
The three-point function is derived from (z1, z2, z3) in the following formula:
1\ 33
G(z1, 22, 23) = I|m (Nn) MW(ZL 22, 23).- (126)

W(z1, 72, z3) is written in the form of theQ-integral

1
W(z1, 22, 23) = Zo / DO eXp{—Z Tr(2logi(z — Q) + QZ)} (127)

where Q is a 31x3n Hermitian matrix. The most dominant saddle pointis
B u}]_I,, 0 0
0 0 wsl,
where

Nl =

w;

(z,- = 4) i=123 (129)
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The dominant contributions t& (z1, z2, z3) becomes
3

n
W(z1,22,23) = NF(ZL 72, 23) (130)
where
X X X X X 1
F(z1,22,23) = = 2 84 o8 12
1-X121—-Xo31—X31 1—-X311-—X1p1-—Xypg
X X 1 X X 1
+ 12 23 + 23 31 (131)
Xij = wiw; = G(z))G(z))- (132)
Thus, the three-point function in GUE is
33

Ge(z1,22,23) = F(z1, 22, 23). (133)

 N% 021022023
The connected part in this result agrees with that obtained by other methods [1, 10-12].
Finally, we calculate the connected three-point function in GSE case. That in this case

is defined by
G( ) = 1 r - 1Tr ! 1Tr ! (134)
2=y VL —H2N - H2N - H/
The three-point function derived from the generating function is as follows
-1\* 33
G(z1, 22, z3) = lim W (z1, 22, 23)- 135
(z1, 22, 23) n—>0(2Nn> 971922023 (z1, 22, 23) (135)
And the generating function is calculated as
1 N .
Wzt 22,29 = / DO exw{—2 Tr2logi(z — Q) + QZ)} (136)
0
where Q is a 61 x6n quaternion real Hermitian matrix. The most dominant saddle p@int
is
_ wlln 0 0
0= < 0 w, O ) (137)
0 0 wgln
where
w; =1 (zi - 4) i=123 (138)
Performing a YN-expansion fortW (zy, z2, z3),
4p3
Wi(z1,22,23) = WF(ZL 22, 23) (139)
where
4X12 X3 Xa X3 X2 1
F =
(12222 = 1y T Xpal— Xo1 T 1= Xo11— X1p1— Xt
X12  X23 1 X2z X3 1
140
+1—X121—X231—X22+1—Xzal—X31:|-—X33 (140)
Xij = wiw; = G(z;)G(z;)- (141)
The three-point function becomes
83
Gc(z1,22,23) = F(z1, z2, 23). (142)

 2N4 0710722073
The connected part in this result agrees with that obtained by other methods [11, 12].
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6. Concluding remarks

We have calculated the averaged one-point Green’s functions, the wide connected two-
and three-level correlators in Gaussian orthogonal, unitary and symplectic random matrix
ensembles by the replica method. The one-point Green’s functions have been calculated to
the next-to-leading order in the/ ¥ expansion in GOE and GSE. Our results are consistent
with those obtained by other methods [4,11,12]. We have notified that there are some
regions of the spectral parameterwhere the employed saddle-point evaluation cannot
work well for averaged Green'’s functions. In those regions, the fluctuation of the auxiliary
variable 9 becomes large and the higher orders in the saddle-point expansion give the same
contribution with the order QVv°). To calculate the short-distance correlator we have to
employ other methods for the integration instead of the saddle-point evaluation.
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